

ThinkInk- An Intelligent Sketch Tool for
Learning Data Structures

Abstract

ThinkInk is an intelligent sketch-based tutoring tool for

learning data structures. Our initial evaluation with 45

students shows that they find the tool engaging, fun

and a good learning experience. This paper focuses on

the interaction design and software engineering

required to build such a tool.

Author Keywords

Data structures; tutoring tool; interaction design;

intelligent tutoring system; sketch.

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User

Interfaces.

Introduction

Data structures, such as arrays, trees and linked lists,

are typically visualized as diagrams. These same

diagrams are used to explain the operations of

algorithms on the data structure. While there have

been many WIMP (Windows, Icons, Menus, Pointers)

based interactive tools developed to aid students

learning data structures – e.g. Vedya [11] and jGRASP

[5], these, by their very nature lack the constructionist

element of drawing the diagrams and tracing algorithm

execution with a pen. Moreover, such tools have been

found to have a high cognitive load and distract

students from actual learning [6]. Conversely, studies

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the owner/author(s).

CHI'18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5621-3/18/04.

https://doi.org/10.1145/3170427.3188441

Md Athar Imtiaz

Department of Computer Science

University of Auckland

New Zealand

mimt087@aucklanduni.ac.nz

Andrew Luxton-Reilly

Department of Computer Science

University of Auckland

New Zealand

a.luxton-reilly@auckland.ac.nz

Beryl Plimmer

Department of Computer Science

University of Auckland

New Zealand

b.plimmer@auckland.ac.nz

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 1

such as those of Oviatt et al [9] have shown the

benefits of pen and paper based sketching for

cognition. However, pen and paper cannot provide the

real-time feedback of an intelligent tutoring tool to

students. A digital ink based sketch enabled tutoring

tool can maximize the learning environment by

providing both sketch interaction and intelligent

tutoring.

The interaction design and software engineering

required for such a sketch tool to meet this aim is

challenging. In order to provide intelligent support the

software must understand the user’s sketched input.

However sketch recognition is not yet at a level where

unconstrained drawing can be reliably recognized. Thus

there is a need to carefully design the interaction and

the recognizer to maximize both the learning

experience and the recognition accuracy. ThinkInk

addresses this challenging scenario by taking a task-

based approach, which helps both in recognition and

learning.

Related work

There have been many data structure tutoring software

tools but our search revealed only three sketch-based

software tools for learning data structures.

Adamchik [2] reports the first such tool. However it

was not evaluated by users. A second sketch-based

tool, CSTutor [3] was evaluated by demonstrating the

functionality it provided and asking students how useful

they thought the tool would be, but the participants in

the study never actually used the tool. A prototype of

a third tool, CoMo [10], was developed, but it was not

evaluated by users.

The presence of just three tools in this domain and lack

of credible user evaluation motivated us to fill the gap

in this area and hence we have done this study.

ThinkInk

ThinkInk was developed using an iterative design

methodology with ongoing informal testing of the user

interface and recognizer. The interaction between these

two major system components is critically important to

the success of the tool. Our approach is to recognize

input at each step of the learning task and to visualize

the recognizer results at the same time as the tutoring

system manages feedback on task completion.

Informal user evaluations of our initial prototypes

showed low user approval. This was because of lack of

interactive feedback to the user and recognition issues.

These issues were rectified by making the tool task-

specific, adding intelligent feedback and improving

recognition.

The revised tool is designed to be task specific with

stepwise feedback. It is also modeless, i.e. the user can

sketch and write without having to choose between

drawing and writing mode. These features help meet

the following important objectives:

1. Improves recognition by limiting the possible

user inputs and making them more predictable

2. User interactivity makes the experience

engaging and promotes active learning

3. Reduces extraneous cognitive load as it is

sketch-based [9]

4. The highly constrained tasks are designed to

provide high levels of guidance and feedback

Figure 1a: ThinkInk use

Figure 1b: Task instructions

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 2

for students, which is known to be valuable for

novices [8].

We followed iterations of paper prototyping, Wizard of

OZ, Cognitive Dimensions and informal usability

studies, ever mindful of the importance of flow in digital

ink environments [7] to reach to the current version of

the software. Figure 1a shows the GUI of ThinkInk. It is

divided into three main regions. The leftmost area

contains the tasks. Next in the centre is the sketching

area. In the rightmost panel pseudocode corresponding

to a user’s sketch is shown.

ThinkInk is implemented using C# Windows Forms and

uses machine learning for recognition. RATA [4] is used

for shape recognition. Character recognition is achieved

using Microsoft Ink DLL. ThinkInks’s custom algorithm

uses stepwise verification for each stroke in sync RATA

and Microsoft Ink. When a stroke is correct and

applicable to the step, positive feedback is provided by:

formalizing the strokes, printing of pseudocode,

highlighting of the correctly performed step, and

progression of status bar. If a stroke is not suitable for

a particular task step then it is automatically deleted

and the user is given hints on what to draw.

Learning Tasks

The current iteration of ThinkInk has 5 tasks for 1-D

arrays. Similar tasks are commonly present in data

structure course books. These tasks were also informed

by the work of Teague and Lister [12], which focused

on understanding how novices learn to manipulate

arrays. The tasks have been divided into three

categories –

 Fundamental level tasks

o Define and create array

o Choosing the correct array index

 Intermediate level tasks

o Appending an element to the end

o Add element at index 0 by shifting

 Advanced level tasks

o Sorting using selection sort

The second intermediate level task is used below as an

exemplar to illustrate tool use and the various

interactions and feedback. The other tasks use similar

interactions.

The task is - shift the elements of array e.g. int [] A =

{6,3,2,8} such that all the elements are shifted to the

right, 8 is overwritten and lost and the new number ‘9’

gets added in the 0th index location. Figure 1b shows the

task and the instructions. The steps to complete this task

are as follows -

Step1: Create an array int [] A = {6,3,2,8}

 The user first sketches a rectangle as shown in

Figure 2a. Upon lifting the stylus, feedback is

shown by formalizing the rectangle as shown in

Figure 2b. The recognition of the rectangle is

performed using RATA [4]. If some other figure

is drawn, then that sketch is automatically

erased and an error message asking the user

to draw a rectangle is shown.

 Next, as in Figure 3a, the user draws vertical

lines to split the rectangle into cells, which is a

common way of representing arrays. RATA is

again used for recognition and ThinkInk’s

algorithm checks if the lines are vertical

enough, and whether they are mostly inside

Figure 2a: Rectangle sketch

Figure 2b: Rectangle formal

Figure 3a: Splitting into cells

Figure 3b: Vertical lines formal

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 3

the rectangle. If the dividing lines are

incorrectly drawn then that ink is automatically

erased, and notification to draw vertical lines is

shown. The vertical lines are formalized if all

conditions are met, as shown in Figure 3b.

 Then the user enters the array elements in

their respective cells. Microsoft Ink is used to

detect the numbers and ThinkInk’s algorithm

detects the location of the numbers in the

sketching area. If the correct number is

entered in the correct cell then pseudocode is

generated, as shown in Figure 4a and 4b. If an

unexpected element is drawn or an element is

drawn in the wrong cell or an elements is

drawn outside the cells, it is automatically

erased and help messages are provided to

guide the user to write the correct element in

the appropriate cell.

Step2: Shift elements to the right

 To shift, the user simply writes the element to

be shifted in the appropriate cell as shown in

Figure 5a. First, the user needs to write 2 to

into index location 3 which will result in the

overwriting of 8 as shown in Figure 5b. This

visualization is made up of two steps – firstly

the color of the number to be overwritten is

changed to red and secondly there is a pause

of 7 seconds after which the number gets

deleted and replaced by the newly shifted

element. This visualization is akin to the

overwriting of an existing element in memory

and was particularly liked by the users as they

felt that it helped them understand better.

 In case of a wrong number being shifted, it is

automatically erased and help notifications are

shown to the users.

 The same process is repeated for shifting 3 to

index 2 and lastly 6 to index 1

Step3: Insert 9 at index 0

 The user writes 9 at index 0 and once this step

is performed correctly a message pops up

indicating completion of the task.

Additional feedback is also provided, for example if a

step has been performed correctly then it gets

highlighted with green, as shown in Figure 6 otherwise,

the wrong sketch is deleted automatically and help

messages assist the user in performing it correctly, as

shown in Figure 7a and 7b. Some steps also have tool-

tips that provide more explanation for completing the

step.

Evaluation

We evaluated the tool with 45 students. The majority of

the participants were novice programmers (30 had

programming experience between 1-5 months). Since

the target audience of ThinInk are users who have no

or little knowledge of data structures, it was ensured

that the participants were new to the concepts of 1-D

arrays.

Methodology

Participants were given an introduction to the research

and a brief demo of the software. Next, they were

asked to use the software, which was running on a

Microsoft Surface Book with a stylus. After completing

the tasks, they answered a 5-point Likert scale

Figure 4a: Pseudocode Feedback

Figure 4b: Pseudocode Feedback

Figure 5a: Shifting 2 to index 3

Figure 5b: After shifting 2

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 4

questionnaire which had questions related to the

following constructs derived from Terzis and

Economides [13] and Abbad et al [1]–

1. System Interactivity (SIT) –the interactivity

and feedback of a system (3 questions).

2. User Interface Design (UID) –the GUI design of

a software (6 questions)

3. Perceived Playfulness (PP) –a user’s

engagement and enjoyment with the software

(5 questions)

4. Perceived Ease of Use (PEOU) –the ease of use

of using the software(4 questions)

5. Perceived Usefulness (PU) –the usefulness of

the software in the user’s context (2 questions)

6. Behavioral Intention (BI) –a user’s interest in

using the software (3 questions).

The average time taken by participants to complete all

the tasks at least once was approximately 8 minutes.

The majority of the participants performed the

Advanced Level task more than once. All the

participants successfully completed all the tasks. The

overall results indicate a highly positive user feedback.

The average user responses for the constructs are

shown in Table 1.

In the user study there was no negative feedback for

any of the constructs, however, there are a few users

who are undecided about the tool. In the case of

Behavioral Intention five out of forty five participants

are not sure if they intend to use such a software in the

future or not. Similarly four users are not very

confident about the playfulness or the fun aspect of

ThinkInk. Lastly, three users also appear to be

undecided about the interactivity and feedback

techniques of the software.

Discussion and Conclusions

Our impetus for developing ThinkInk is research

indicating the benefits of visualization, interactive

feedback and sketching for learning [2; 3; 10].

Moreover, lower cognitive demand of digital-ink and the

positive impact of highly constrained tasks on cognition

[8; 9] was an added motivator.

While the vast majority of students were positive about

all aspects of the tool, a few were neutral. This could be

for many reasons: they found the content easy to grasp

so did not require any further instruction; insufficient

time to get used to the tool; novelty of the interaction

with a stylus-based learning tool. No learning strategy

is going to be perfect for all students – the sizable

positive response suggests our approach works for the

majority of students.

We faced many challenges designing and implementing

ThinkInk so that it has modeless pen-only interaction

which flows seamlessly. Initially problems were caused

by minimally constrained tasks with little feedback and

low recognition success rates. After adopting a highly

constrained task design similar to that used in worked

examples [8], through several rounds of design,

implementation and user testing the user interaction

was constrained and refined. During this process we

were cognizant that user flow is crucial for both

learning and interaction. Our final prototype provides

modeless pen-based interaction where the user can

move freely through and between tasks.

Figure 6: Successful step

highlighted

Figure 7a: Help message

Figure 7b: Help message

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 5

Our tool promotes learning through interactive

construction of the data structure visualization and

tracing of algorithms. While this study focused on 1-D

arrays, we are currently adding binary trees and linked

lists to the tool. We also plan to measure the learning

gain students achieve with ThinkInk.

References
1 Abbad, M.M., Morris, D., and DE Nahlik, C., 2009.

Looking under the bonnet: Factors affecting
student adoption of e-learning systems in Jordan.
The International Review of Research in Open and
Distributed Learning 10, 2.

2 Adamchik, V., 2011. Data structures and
algorithms in pen-based computing environments.
In Global Engineering Education Conference
(EDUCON), 2011 IEEE IEEE, 1211-1214.

3 Buchanan, S., Ochs, B., and Laviola JR, J.J., 2012.
CSTutor: a pen-based tutor for data structure
visualization. In Proceedings of the 43rd ACM

technical symposium on Computer Science
Education ACM, 565-570.

4 Chang, S.H.-H., Plimmer, B., and Blagojevic, R.,
2010. Rata. ssr: Data mining for pertinent stroke
recognizers. In Proceedings of the Seventh Sketch-
Based Interfaces and Modeling Symposium
Eurographics Association, 95-102.

5 Cross II, J.H., Hendrix, T.D., Jain, J., and Barowski,
L.A., 2007. Dynamic object viewers for data
structures. ACM SIGCSE Bulletin 39, 1, 4-8.

6 Dorta, T., 2007. Implementing and assessing the
hybrid ideation space: a cognitive artefact for

conceptual design. Moon 61, 77.

7 Grosky, W.I., Zeleznik, R., Miller, T., Van Dam, A.,
LI, C., Tenneson, D., Maloney, C., and Laviola, J.J.,
2008. Applications and issues in pen-centric
computing. IEEE MultiMedia 15, 4.

8 Kirschner, P.A., Sweller, J., and Clark, R.E., 2006.
Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and
inquiry-based teaching. Educational psychologist
41, 2, 75-86.

9 Oviatt, S., Arthur, A., and Cohen, J., 2006. Quiet
interfaces that help students think. In Proceedings
of the 19th annual ACM symposium on User
interface software and technology ACM, 191-200.

10 Sabisch, A.T.C., 2014. CoMo: a whiteboard that
converses about code Massachusetts Institute of

Technology.

11 Segura, C., Pita, I., Del Vado Vírseda, R., Saiz,
A.I., and Soler, P., 2008. Interactive Learning of
Data Structures and Algorithmic Schemes. In
International Conference on Computational Science
Springer, 800-809.

12 Teague, D. and Lister, R., 2014. Programming:
reading, writing and reversing. In Proceedings of
the 2014 conference on Innovation & technology in
computer science education ACM, 285-290.

13 Terzis, V. and Economides, A.A., 2011. The
acceptance and use of computer based

assessment. Computers & Education 56, 4, 1032-
1044.

S
tr

o
n

g
ly

A
g

r
e
e

A
g

r
e
e

M
a
y
b

e

BI 16 24 5

PU 29 15 1

PEOU 27 17 1

PP 16 25 4

UID 15 29 1

SIT 17 25 3

Table 1: User opinion. Where the

numbers indicate the number of

users– BI (Behavioral Intention);

PU (Perceived Usefulness); PEOU

(Perceived Ease of Use); PP

(Perceived Playfulness); UID

(User Interface Design); SIT

(System Interactivity)

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW088, Page 6

